Eukaryotic replication origins: Strength in flexibility

نویسندگان

  • Charanya Kumar
  • Dirk Remus
چکیده

The eukaryotic replicative DNA helicase, Mcm2-7, is loaded in inactive form as a double hexameric complex around double-stranded DNA. To ensure that replication origins fire no more than once per S phase, activation of the Mcm2-7 helicase is temporally separated from Mcm2-7 loading in the cell cycle. This 2-step mechanism requires that inactive Mcm2-7 complexes be maintained for variable periods of time in a topologically bound state on chromatin, which may create a steric obstacle to other DNA transactions. We have recently found in the budding yeast, Saccharomyces cerevisiae, that Mcm2-7 double hexamers can respond to collisions with transcription complexes by sliding along the DNA template. Importantly, Mcm2-7 double hexamers remain functional after displacement along DNA and support replication initiation from sites distal to the origin. These results reveal a novel mechanism to specify eukaryotic replication origin sites and to maintain replication origin competence without the need for Mcm2-7 reloading.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell Timer/Cell Clock

Like the biological clock in the body, replication of each cell type (even different cells of the same organism) follows a timing program. Abnormal function of this timer could be an alarm for a disease like cancer. DNA replication starts from a specific point on the chromosome that is called the origin of replication. In contrast to prokaryotes in which DNA replication starts from a single ...

متن کامل

DeOri: a database of eukaryotic DNA replication origins

SUMMARY DNA replication, a central event for cell proliferation, is the basis of biological inheritance. The identification of replication origins helps to reveal the mechanism of the regulation of DNA replication. However, only few eukaryotic replication origins were characterized not long ago; nevertheless, recent genome-wide approaches have boosted the number of mapped replication origins. T...

متن کامل

The activities of eukaryotic replication origins in chromatin.

DNA replication initiates at chromosomal positions called replication origins. This review will focus on the activity, regulation and roles of replication origins in Saccharomyces cerevisiae. All eukaryotic cells, including S. cerevisiae, depend on the initiation (activity) of hundreds of replication origins during a single cell cycle for the duplication of their genomes. However, not all origi...

متن کامل

Helicase loading at chromosomal origins of replication.

Loading of the replicative DNA helicase at origins of replication is of central importance in DNA replication. As the first of the replication fork proteins assemble at chromosomal origins of replication, the loaded helicase is required for the recruitment of the rest of the replication machinery. In this work, we review the current knowledge of helicase loading at Escherichia coli and eukaryot...

متن کامل

Making sense of eukaryotic DNA replication origins.

DNA replication is the process by which cells make one complete copy of their genetic information before cell division. In bacteria, readily identifiable DNA sequences constitute the start sites or origins of DNA replication. In eukaryotes, replication origins have been difficult to identify. In some systems, any DNA sequence can promote replication, but other systems require specific DNA seque...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016